Stability and Observer Design for a Class of Nonsmooth Dynamical Systems with Nonconvex State Constraints

نویسندگان

  • Aneel Tanwani
  • Bernard Brogliato
  • Christophe Prieur
چکیده

This paper deals with the stability and observer design for Lur’e systems with multivalued nonlinearities, which are not necessarily monotone or time-invariant. Such differential inclusions model the motion of state trajectories which are constrained to evolve inside timevarying non-convex sets. Using Lyapunov-based analysis, sufficient conditions are proposed for local stability in such systems, while specifying the basin of attraction. If the sets governing the motion of state trajectories are moving with bounded variation, then the resulting state trajectories are also of bounded variation, and unlike the convex case, the stability conditions depend on the size of jumps allowed in the sets. Based on the stability analysis, a Luenberger-like observer is proposed which is shown to converge asymptotically to the actual state, provided the initial value of the state estimation error is small enough. In addition, a practically convergent state estimator, based on the high-gain approach, is designed to reduce the state estimation error to the desired accuracy in finite time for larger initial values of the state estimation error. The two approaches are then combined to obtain global asymptotically convergent state estimates. Key-words: Nonsmooth systems, sweeping process, prox-regular sets, locally bounded variation, Lyapunov stability, observer design, differential measure. ∗ Corresponding author. Email: [email protected] † Team BipOp, INRIA Grenoble, 655 Avenue de l’Europe, 38334 Montbonnot Cedex, France. ‡ Head of Team BipOp. Email: [email protected] § Senior Researcher (CNRS), Gipsa-lab, Department of Automatic Control, 11 Rue des Mathématiques, BP 46, 38402 Saint Martin d’Hères, France. Email: [email protected] ha l-0 07 90 61 8, v er si on 2 9 O ct 2 01 3 Stabilité et Observateurs pour les Systèmes Nonsmooth avec les Contraintes Nonconvexes. Résumé : This paper deals with the stability and observer design for Lur’e systems with multivalued nonlinearities, which are not necessarily monotone or time-invariant. Such differential inclusions model the motion of state trajectories which are constrained to evolve inside timevarying non-convex sets. Using Lyapunov-based analysis, sufficient conditions are proposed for local stability in such systems, while specifying the basin of attraction. If the sets governing the motion of state trajectories are moving with bounded variation, then the resulting state trajectories are also of bounded variation, and unlike the convex case, the stability conditions depend on the size of jumps allowed in the sets. Based on the stability analysis, a Luenberger-like observer is proposed which is shown to converge asymptotically to the actual state, provided the initial value of the state estimation error is small enough. In addition, a practically convergent state estimator, based on the high-gain approach, is designed to reduce the state estimation error to the desired accuracy in finite time for larger initial values of the state estimation error. The two approaches are then combined to obtain global asymptotically convergent state estimates. Mots-clés : Nonsmooth systems, sweeping process, prox-regular sets, locally bounded variation, Lyapunov stability, observer design, differential measure. ha l-0 07 90 61 8, v er si on 2 9 O ct 2 01 3 Stability and Observer Design for Nosmooth Systems 3

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation

This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...

متن کامل

Observer Based Fuzzy Terminal Sliding Mode Controller Design for a Class of Fractional Order Chaotic Nonlinear Systems

This paper presents a new observer based fuzzy terminal sliding mode controller design for a class of fractional order nonlinear systems. Robustness against uncertainty and disturbance, the stability of the close loop system and the convergence of both the tracking and observer errors to zero are the merits of the proposed the observer and the controller. The high gain observer is applied to es...

متن کامل

A Variable Structure Observer Based Control Design for a Class of Large scale MIMO Nonlinear Systems

This paper fully discusses how to design an observer based decentralized fuzzy adaptive controller for a class of large scale multivariable non-canonical nonlinear systems with unknown functions of subsystems’ states. On-line tuning mechanisms to adjust both the parameters of the direct adaptive controller and observer that guarantee the ultimately boundedness of both the tracking error and tha...

متن کامل

AN OBSERVER-BASED INTELLIGENT DECENTRALIZED VARIABLE STRUCTURE CONTROLLER FOR NONLINEAR NON-CANONICAL NON-AFFINE LARGE SCALE SYSTEMS

In this paper, an observer based fuzzy adaptive controller (FAC) is designed fora class of large scale systems with non-canonical non-affine nonlinear subsystems. It isassumed that functions of the subsystems and the interactions among subsystems areunknown. By constructing a new class of state observer for each follower, the proposedconsensus control method solves the problem of unmeasured sta...

متن کامل

Development of a Robust Observer for General Form Nonlinear System: Theory, Design and Implementation

The problem of observer design for nonlinear systems has got great attention in the recent literature. The nonlinear observer has been a topic of interest in control theory. In this research, a modified robust sliding-mode observer (SMO) is designed to accurately estimate the state variables of nonlinear systems in the presence of disturbances and model uncertainties. The observer has a simple ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013